Random matrix theory and discrete moments of the Riemann zeta function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Matrix Theory and Discrete Moments of the Riemann Zeta Function

We calculate the discrete moments of the characteristic polynomial of a random unitary matrix, evaluated a small distance away from an eigenangle. Such results allow us to make conjectures about similar moments for the Riemann zeta function, and provide a uniform approach to understanding moments of the zeta function and its derivative.

متن کامل

Moments of the Riemann Zeta-function

0 |ζ( 1 2 + it)| dt. For positive real numbers k, it is believed that Mk(T ) ∼ CkT (logT ) 2 for a positive constant Ck. A precise value for Ck was conjectured by Keating and Snaith [9] based on considerations from random matrix theory. Subsequently, an alternative approach, based on multiple Dirichlet series and producing the same conjecture, was given by Diaconu, Goldfeld and Hoffstein [4]. R...

متن کامل

High Moments of the Riemann Zeta{function

In 1918 G. Hardy and J. Littlewood proved an asymptotic estimate for the Second moment of the modulus of the Riemann zeta-function on the segment [1/2,1/2+iT] in the complex plane, as T tends to infinity. In 1926 Ingham proved an asymptotic estimate for the fourth moment. However, since Ingham’s result, nobody has proved an asymptotic formula for any higher moment. Recently J. Conrey and A. Gho...

متن کامل

Hybrid Moments of the Riemann Zeta-function

The “hybrid” moments Z 2T T |ζ( 1 2 + it)| „ Z t+G t−G |ζ( 1 2 + ix)| dx m dt of the Riemann zeta-function ζ(s) on the critical line Re s = 1 2 are studied. The expected upper bound for the above expression is Oε(T G). This is shown to be true for certain specific values of k, l,m ∈ N, and the explicitly determined range of G = G(T ; k, l,m). The application to a mean square bound for the Melli...

متن کامل

Random matrix theory and the derivative of the Riemann zeta function

Jk(T ) is clearly de­ ned for all k > 0, and, on the additional assumption that all the zeros are simple, for all k < 0. It has previously been studied by Gonek (1984, 1989, 1999) and Hejhal (1989), and is discussed in Odlyzko (1992, x 2.12) and Titchmarsh (1986, x 14). The model proposed by Keating & Snaith (2000) is the characteristic polynomial of an N £ N unitary matrix U with eigenangles 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2003

ISSN: 0305-4470

DOI: 10.1088/0305-4470/36/12/303